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Abstract. We explore the effects of spike-timing-dependent plasticity (STDP) on weak signal transmission
in a noisy neural network. We first consider the network where an ensemble of independent neurons, which
are subjected to a common weak signal, are connected in parallel to a single postsynaptic neuron via exci-
tatory synapses. STDP can make the signal transmission more efficient, and this effect is more prominent
when the presynaptic activities exhibit some correlations. We further consider a two-layer network where
there are only couplings between two layers and find that postsynaptic neurons can fire synchronously un-
der suitable conditions. Both the reliability and timing precision of neuronal firing in the output layer are
remarkably improved with STDP. These results indicate that STDP can play crucial roles in information

processing in nervous systems.

PACS. 87.18.Sn Neural networks — 87.17.Aa Theory and modeling; computer simulation

1 Introduction

Neurons can discharge action potentials by integrating in-
put currents, and information is represented by these fir-
ing events. The synapses through which neurons commu-
nicate with one another provide passage for information
transmission. Synaptic efficacy can be altered by neuronal
activity, which is known as synaptic plasticity. Hebb once
proposed that the correlation between pre- and postsynap-
tic activity could induce synaptic modification [1], which
has widely been thought to be the mechanism for learning
and memory.

Recent experimental studies [2] have reported a new
kind of synaptic plasticity, i.e. spike-timing-dependent
plasticity (STDP), where both the direction and degree
of synaptic modification depend on the temporal rela-
tionship between pre- and postsynaptic activity. Model-
ing studies have also explored the mechanisms for STDP
and its functions [3]. Under some conditions, long-term
potentiation occurs when a single presynaptic spike pre-
cedes a postsynaptic one, while the reverse order of activ-
ity produces long-term depression. Furthermore, there is
a sharp conversion from maximal strengthening to max-
imal weakening of synapses when the timing difference
of spikes changes sign around 0. Such a mechanism can
lead to synaptic competition, which is required for any
form of pattern formation, and may be important when
information is coded in the timing of individual action po-
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tentials [4]. STDP may also make a synapse adjust to an
optimal strength for neural synchronization. It has been
shown that STDP indeed allows synchronization over a
wide range of frequency mismatches and makes it more
robust against noise [5]. However, what roles STDP plays
in signal transmission and timing coding remains elusive
when considering cortical neurons are subjected to large
numbers of random synaptic inputs.

Motivated by the aforementioned considerations, here
we explore whether signal transmission can be enhanced
through STDP in a noisy neural network. The network is
composed of an ensemble of presynaptic neurons, which
receive a common subthreshold signal, plus a single post-
synaptic neuron coupled with all presynaptic neurons via
excitatory synapses. Meantime, each neuron is subjected
to an independent Gaussian noise. By numerical simula-
tions, we find that the average value of synaptic weight is
closely related to the level of correlation among presynap-
tic activity. The more correlated the neurons exhibit, the
larger this value is. STDP can make the signal transmis-
sion more efficient in the presence of synchronized presy-
naptic activity. Such an effect is more prominent when
the signal frequency is within the range of 30—90 Hz.
We also consider a two-layer network and find that most
postsynaptic neurons can fire simultaneously even though
presynaptic neurons exhibit weak correlation. Both the
reliability and timing precision of spiking in the output
layer are remarkably improved due to an increment in
synaptic weight. That is, the synaptic weights are adapted
to enhance the accuracy of timing coding. This makes it
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possible that precise spatiotemporal firing patterns can be
exploited to encode a stimulus accurately, even in a noisy
environment.

2 Model and method

We first consider the network where a group of Hodgkin-
Huxley (HH) model neurons are connected in parallel to
a single postsynaptic neuron. The dynamic equations for
the network are presented as follows:

mdd‘f = —gnamihi(Vi — Vi) — gni (Vi — Vi)
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(4)

All the functions and parameter values are the same as
in reference [6]. That is, C,,, = 1 pF/em?, Vy, = 50 mV,
Vi = =77 mV, V; = —54.4 mV, gy, = 120 mS/cm?,
gk = 36 mS/em?, g = 0.3 mS/cm?, and a,, (V) =
0.1(V + 40)/(1 — e~ (VH40)/10) " 3 (V) = 4e=(V+65)/18
anp(V) = 0.07e=(Vit65)/20 - 3, (V) = 1/(1 4 e~ (V+35)/10)
o (V) = 0.01(V + 55)/(1 — e=(VF59/10) "and B,(V) =
0.125¢~(V+65)/80 " Al] the currents are in units of A /cm?.
Numerical integration of these equations is performed by
a second-order stochastic algorithm and the time step is
1000/32768 ms.

Iy is a constant bias taken as 1 pA/cm?. The term
g;(t) represents a Gaussian white noise with

(ei(t)) = 0,(ei(t1)e;(t2)) = 2D6i;6(t — t2),  (5)

where D is referred to as noise intensity and is in units
of 1A? /em*. The presynaptic neurons are independent of
any other (with I7¥" () = 0) and are subjected to a sub-
threshold periodic signal, s;(t) = A cos(27 fst), which can
be regarded as the input generated by the local field po-
tential. The signal frequency is f; = 50 Hz unless spec-
ified otherwise, while the signal amplitude is always set
to A = 1 pA/cm?. In contrast, the postsynaptic neuron

only receives synaptic inputs from all presynaptic neurons.
I}VY (t) is defined as [5]

“y Rt

VN1 (t) represents membrane voltage of the postsynaptic
neuron, and Ej,, is the synaptic reversal potential taken
as 0 mV. g;(¢) is the synaptic weight of the jth synapse
and is in units of mS/cm?, while s;(¢) is the corresponding
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fraction of open synaptic channels and obeys first-order
kinetics

ds;(t

Bl o - sV 0) - 85 ()
with H(V;(t)) = [1 + tanh(5V;(¢))]/4, @ = 10 ms™!, and
B = 0.2 ms~!. Here we assume that the normalized con-

centration of the postsynaptic transmitter-receptor com-
plex, H(V;(t)), is an instantaneous and sigmoid function
of the presynaptic membrane potential [7]. The number of
presynaptic neurons is set to N = 500.

We call a synapse static if g; remains constant over
time. Otherwise, through STDP g;(t) changes by an ad-
ditive update rule [5], i.e.,

Agj(t) = Msgn(At;) eX13(—7“|A75‘| (8)

with M = 0.1 mS/cm?, At; = tyos — 13, being the
time difference between post- and presynaptic spikes, and
r = 0.15 ms~!. Figure la depicts the amount of unitary
synaptic modification against At;. Clearly, there is no
strength change when the time difference is large enough.
In contrast, a sharp conversion from potentiation to de-
pression of synaptic efficacy occurs within few millisec-
onds. This indicates that synapses are most sensitive to
the timing of spikes. Throughout the paper the initial
value of each synaptic weight is set to 0.1. Since these
synaptic connections are excitatory, the lower bound of
g;(t) is 0, while its upper bound is set to 0.3. Note that a
single presynaptic spike alone cannot trigger the postsy-
naptic neuron to fire.

We use a coherence measure K to quantify the level
of correlation among presynaptic neurons. If a long time
interval T is divided into small bins of 7 and two spike
trains are given by X (1) =0 or 1 and Y(I) = 0 or 1, with
l=12,...,m (T/m = 7), then a coherence measure for
the pair is defined as [8]

it 1 XY (@)
VEL XL YD)

The population coherence measure K is obtained by av-
eraging K;; over all pairs of presynaptic neurons. Here 7
is taken as 2 ms.

The output signal-to-noise ratio (SNR) is defined as
10log,o(S/B) with S and B representing the signal peak
and the average amplitude of background noise at the in-
put signal frequency in the power spectrum of membrane
potential, respectively [9]. An average over 50 different re-
alizations of noise is taken to obtain reported values.

9)

Kij(t) =

3 Results and discussion

In the absence of input signal, the presynaptic neurons
discharge spikes independently owing to the independent
Gaussian white noise. The mean time-averaged synaptic

N
weight, gs = % 3 (g;(t))¢, is used to characterize the av-
j=1

erage steady-state value of synaptic weight (a long tran-
sient is discarded for computing gs). Figure 1b plots g
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Fig. 1. (a) The amount of unitary synaptic modification vs.
the time difference between a single pair of pre- and postsy-
naptic spikes. (b) gs vs. noise intensity D in the absence or
presence of input signal. (c) The coherence measure K vs. D.
The signal frequency is fs = 50 Hz.

versus noise intensity D. When D is small, the postsy-
naptic neuron is primarily evoked to fire by noise, and
the firing rate is very low. The time differences between
the pre- and postsynaptic spikes are often quite large. As
a result, the modification of synaptic strength is slight,
and g5 is nearly equal to 0.1. But as D is larger than 2,
the pre- and postsynaptic neurons fire more frequently.
Thus there are many spikes located within a short time
window, and the impact of STDP becomes more promi-
nent. The synaptic efficacies are potentiated or depressed
smartly and randomly. Consequently, g, is stable around
0.15, which is half the upper bound of synaptic weight,
over a wide range of noise intensities.

In the presence of input signal, the firings of presy-
naptic neurons are modulated by the signal. At very low
noise level, there almost exists no postsynaptic firing and
thus g, equals 0.1 (see Fig. 1b). For moderate noise inten-
sity, most of presynaptic firing events occur around the
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maxima of the signal, showing a high coherence with the
signal. That is, the presynaptic neurons discharge spikes
with some correlation. Figure 1c plots K versus D. Ob-
viously, there exists an optimal noise level for neural syn-
chronization. Since each synaptic input is subthreshold,
the synchronous inputs can more easily trigger the post-
synaptic neuron to fire. Such a causality between pre- and
postsynaptic spikes makes their time differences relatively
small and thus induces considerable potentiation of synap-
tic efficacy. The increment in synaptic weight causes the
postsynaptic neuron more prone to discharge spikes in a
short time interval after receiving synaptic inputs. This
further induces strengthening of synaptic weight. Such a
positive feedback process makes gs approach 0.3, its up-
per bound, when D = 0.8. When noise intensity becomes
large, both the presynaptic and postsynaptic neurons fire
more randomly, and thus gs is around 0.15 when D > 10.
Here we see that the change of synaptic weight is closely
related to the degree of presynaptic correlation.

We also plot the histograms of the fraction of synaptic
weight taking different steady-state values in Figure 2. In
the absence of input signal, for small noise intensity the
values of g; are close to 0.1 (see Fig. 2a). As D increases,
the distribution spreads between two limiting values (0
and 0.3), while the peak located at 0.3 becomes higher
but that at 0.0 gets lower. In contrast, in the presence
of input signal, the histogram first exhibits a unimodal
feature, and the only peak is first located around 0.1 and
then shifts rightwards to be around 0.3 when D > 0.5 (see
Fig. 2b). But as noise intensity is further increased, the
distribution becomes broad and the peak height evidently
drops. For D > 10 the histogram also exhibits a bimodal
feature with two peaks located at 0 and 0.3, respectively.
These are in agreement with the result shown in Figure 1b.

When synaptic weight varies through STDP, the firing
activity of the postsynaptic neuron shows more correlation
with the input signal than that of presynaptic neurons
over a range of noise intensities. For D = 1, for example,
the postsynaptic neuron fires spikes nearly periodically
at the same frequency as the signal (see Fig. 3a), imply-
ing that the postsynaptic neuron can effectively detect
and transmit the periodic signal. But in the case of static
synapses, postsynaptic firings exhibit distinctive skipping
and are nearly as noisy and variable as those of presynap-
tic neurons. To characterize this quantitatively, Figure 3b
depicts the output SNR. Each curve exhibits a typical fea-
ture of stochastic resonance (SR) [9], that is, the SNR goes
through a maximum with increasing D. In other words,
the signal can be transmitted more efficiently when noise
intensity is within an appropriate range. This verifies that
noise indeed plays a critical role in weak signal processing.
On the other hand, through STDP the SNR of the post-
synaptic neuron is improved evidently for 0.5 < D < 7.5,
compared to that of presynaptic neurons. In addition, it is
always much larger than that in the case of static synapses.

Such an effect results from the increment in synaptic
weight induced by the correlated presynaptic activity.
This means that the signal transmission is indeed en-
hanced with STDP, which is of significant biological
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Fig. 2. Histograms of the fraction of synaptic weight taking different values for D = 0.5, 2, and 10 without input signal (a)
and for D = 0.3, 1, and 10 with input signal (b), respectively. The signal frequency is fs = 50 Hz.
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Fig. 3. (a) The time course of membrane potential Vi 1(t)
in the cases of static and dynamic synapses, respectively. The
dotted line is for some presynaptic neuron. The noise intensity
is D = 1. (b) The SNRs corresponding to the above cases vs.
noise intensity. The signal frequency is fs = 50 Hz.

implication. The results also imply that synchronized ac-
tivity can propagate rapidly across neural networks when
STDP is taken into account [10]. We may as well assume
that the postsynaptic neuron acts as a coincidence detec-
tor and prefers to relaying synchronized activity, as sug-
gested in reference [11]. In brief, synapses may be able to
detect and transmit information, to the extent associated

with the level of correlation among presynaptic activity,
through dynamical modification of their strength.

Such an enhancement of signal transmission also holds
for various signals, especially when the signal frequency is
within the range of 30—90 Hz. The SNR takes a relatively
large value for these signals in both static and dynamic
synapses cases (see Fig. 4a). As discussed above, the cor-
relation of presynaptic activity plays a significant role in
this effect. Figure 4b plots the coherence measure K versus
the signal frequency. Clearly, the presynaptic neurons dis-
charge spikes with more correlation for the signals in the
same frequency sensitivity range. As a result, g5 takes a
relatively large value (see Fig. 4c¢). This selective improve-
ment origins from the fact that HH neurons are more sen-
sitive to the signals with frequencies located in this range,
owing to the resonance effects between the periodic sig-
nal and the subthreshold oscillation of membrane poten-
tial [12]. The resonance makes neurons respond selectively
to the signals at preferred frequencies. This, together with
STDP, remarkably improves the capability of neurons to
transmit these signals efficiently. Such a selective enhance-
ment may be one of the basic principles of signal process-
ing in the nervous system.

We have found that the steady-state values of synaptic
weight are closely associated with the degree of presynap-
tic correlation. On the other hand, since synaptic weight
can be modified through STDP with a high precision on
the order of milliseconds, it is of interest to examine its in-
fluence on spike timing. To this end, we extend the current
network into a two-layer network. In this structure, each
neuron of the output layer receives synaptic inputs from
all neurons in the input layer, and there exists no coupling
between the neurons within the same layer. Each layer can
be regarded as a functional group. The number of neurons
in each layer is still N = 500. Here we assume that synap-
tic weight varies only when time is larger than 4110 ms.
It is worth comparing different neural activity before and
after the application of STDP.
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Fig. 4. Noise intensity D = 1. (a) The SNR of the postsynap-
tic neuron vs. signal frequency in the presence or absence of
STDP. (b) The coherence measure K and (c) gs vs. the signal
frequency with STDP.

We depict the temporal evolution of g, =

N N
= > 2 945(t) in Figure 5a, where g;;(t) represents the
i=1j=1
synaptic weight between the ith neuron in the input layer
and the jth neuron in the output layer. After STDP is
applied, g, increases progressively and is saturated at the
value of 0.28. This is consistent with the result shown in
Figure 1b.

To explore the impact of STDP on spike timing, we
plot the post stimulus time histogram (PSTH) of the out-
put layer in Figure 5b, which shows the number of spikes
per millisecond [13]. There is a peak in each driving cycle,
and the peak height remarkably rises over time and finally
is saturated at a rather large value compared to that of the
input layer shown in the inset of Figure 5b. This indicates
that most postsynaptic neurons discharge simultaneously.
As a result, the reliability of signal transmission is evi-
dently improved through STDP. Based upon the shape of
smoothed data set taken from a five-point moving average
of PSTH, we can compute the spike timing precision P (in
each driving cycle), namely,

P; = H; Jw;, (10)
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Fig. 5. Noise intensity D = 1. (a) g» and (b) PSTH vs. time.
The inset is that for the input layer. (c) The spike timing pre-

cision vs. the index of driving cycle. The signal frequency is
fs =50 Hz.

where H; is the height of the ith peak in the smoothed
PSTH and w; is the width at H;/e [13]. Figure 5c dis-
plays P against the index of driving cycles. Clearly, the
timing precision also increases over time. That is, the tem-
poral structure of spike trains becomes more accurate with
STDP, implying that this mechanism is beneficial to tem-
poral encoding. The improvement of timing precision is
also sensitive to the signal frequency and noise intensity
because it occurs when the synapses are potentiated in
response to correlated synaptic inputs (data not shown).
Therefore, through STDP postsynaptic neurons can fire
synchronously under suitable conditions, and the timing
precision is also largely improved.

4 Conclusions

Synchronized activity has been observed in many brain
areas and is believed to play functional roles such as
pattern segmentation and feature binding [14]. The is-
sue concerning the mechanism underlying synchroniza-
tion has attracted wide interest. Here we demonstrated
that when the spike-timing-dependent synaptic plastic-
ity is taken into account, synchronized activity can be
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attained although presynaptic neurons exhibit weak cor-
relations. This is largely different from the case where
synchronization origins from the coupling interactions be-
tween neurons in the same functional ensemble. Here syn-
chronization just occurs through dynamical modification
of synaptic weight. That is, synapses can be adjusted to
an optimal value for neural synchronization [5]. Such a
mechanism is of potential functional significance, by which
familiar stimuli may generate synchronized spike volleys
that can be propagated rapidly across neural tissue [10].

On the other hand, through STDP both the reliability
and timing precision of firing, on the order of millisec-
onds, can be enhanced greatly. This is consistent with
the report that under certain conditions the spike tim-
ing can exhibit a high precision and reproducibility with
the temporal resolution being 2—3 ms [15]. In addition,
spiking patterns with high temporal fidelity can be prop-
agated stably through cortical networks, which may be
important for information transfer in a robust way against
background noise [16]. These all suggest that STDP is a
significant mechanism in temporal coding and that pre-
cise spatiotemporal patterns can be exploited to encode
stimuli accurately.

It is worth noting that we introduced hard bounds
to keep synaptic weight from increasing without bound.
Others have also shown that a weight-dependent mech-
anism for strength amplitude modification can be intro-
duced more naturally to keep synapses stable [17]. Our
preliminary results indicate that the conclusions drawn
here qualitatively hold even when the weight-dependent
STDP rule is adopted. Further work is in progress.

In addition, Amit and Mongillo have recently used
the spike-driven synaptic plasticity model to generate
stimulus-selective persistent activity [18]. In their model,
the synaptic dynamics is described as a function of pre-
and postsynaptic spike rates. This can implement rate-
dependent plasticity and exhibit both long-term potenti-
ation and depression. In the context of STDP, however,
the steady distribution of synaptic weight is more sensi-
tive to the firing time than to firing rates. It is interesting
to compare the signal transmission efficiency with these
models.

In summary, we have studied the effects of STDP on
signal transmission. Neural information can be trans-
mitted more efficiently through STDP than in the case
of static synapses. With STDP both the reliability and
timing precision of spiking are profoundly improved. Such
an enhancement effect is sensitive to the signal frequency.

The European Physical Journal B

Therefore STDP can play critical roles

processing.
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